
1 11 1 1 11111111 1 1 1 1

BY DAVID McGOVERAN

System thinking and experience, not just technical expertise, are
what the relational user needs to tune · complex database applications

of Relational
Performance

THE ABILITY TO
tune a relational

databa5e application for perfor­
mance is a fine art. If you want
throughput, you must be CaJ'.eful to
distingUish between tuning the
database for performance and tun­
ing the entire system for through·
put. The two are not always com­
patible. In either case, relational
performance tuning takes getting
used to.

The problem is obvious
when you realize that relational
databases should protect the user
from knowledge of how it handles
the requests; requests may come
not only from database users but
also from production programs
and database administrators. A
DBMS true to the relational prom­
ise should always respond to re­
quests efficiently. The system
would create and use indexes as
needed and disk allocation would
be optimized to minimize storage
consumption and access time si-

Tuning
• multaneously. Transaction man­

agement and recovery would nev­
er interfere with concurrency. SQL
allowing the same result to be ac­
complished from syntactically dif­
ferent statements would never af­
fect performance . .

Unfortunately, no one has
been able to reach this ideal in
practice. To be fair, commercial re­
lational database products are im­
proving in this regard. However,
such a level of intelligence in a .
database may ~ neither ac.hiev­
able nor desirable. We are not like­
ly to solve the inherent problems
for quite a while. Until we are able
to, database performance tuning
will be an issue for many produc­
tion relational applications.

JULY 1989
?f..

Some professionals believe
that faster and less expensive
hardware, more sophisticated rela­
tional database products,.and dis­
tributed database technology will
alleviate the need for performance
tuning. If the user commwtjif s
needs typically did not expand to
consume · available resources, I
would agree. But the volume of
desired software applications in a
production organization tends to
grow faster than the acquisition of
the hardware required to imple­
ment it. For certain production re­
lational applications, hardware re­
quirements frequently are under­
estimated during design and
development. The result is a need
for performance tuning to deploy
the system or to prolong the life of
the hardware platform.

I call the class of production
relational applications that may
need performance tuning "com­
plex database applications." A
number of thresholds, when ex-

--1--rrrr 111111111111

•

ceeded, cause an application to be
classified as complex. Among the
thresholds are:

D Number of tables.
D Depth of tables.
D Width of tables.
D Number of concurrent

users.
D Scope of transactions.
D Number of tables in a typi-

cal join.
D Total database size.
D Transaction rate.
D General transaction com­

plexity.
The threshold for each of

these parameters depends on the
hardware platform, operating sys­
tem, and database product by ver­
sion. The thresholds are altered by
the mix of other nonrelational
work that must be done in the
same environment, since these ef­
fectively lower the available ca­
pacity. It is not sufficient to know
that none of the thresholds is ex­
ceeded. If enough of the param-

eters are close to their threshold
values, the application may quali­
fy as complex.

Clearly, selecting a database
product depends on analyzing the
requirements and a knowledge of
the performance characteristics of
available products. In mission­
critical and complex applications,
any amount of performance tun­
ing may not result in a viable sys­
tem • if the wrong selection has
been made.

Transaction rate benchmarks
can be quite useful in analyzing
the performance characteristics of
a relational database, but proper
interpretation of the benchmark
requires a knowledge of the prod­
uct. Then, along with judicious es-

DATABASE PROGRAMMING & DESIGN
27

'

•·

timates of the application require­
ments, the experienced database
professional can estimate perfor­
mance using the product. Compar­
ing transaction rates between
products has little relevance to the
performance that can be expected
in production. If the expertise is
not available to perform such an
analysis, performance modeling
and analysis, in which the applica­
tion transaction mix is simulated
in the target environment, can
yield far more useful information.

Assuming you have not been
placed in such an untenable posi­
tion, we will examine some of the
knobs that you may turn to tune a
relational database application. I
use the term relational database
application, not relational database
management system; in more than ~

eight years of relational database ~
applications consulting, I found ~
most problems of this sort are the ~
result of using the relational data- ~
base product incompatibly with ~

' ! -
f

i
I.

'1.
I

the assumptions of nonprocedural
data processing. So, I will briefly
discuss some characteristics of ap­
plications appropriately using re­
lational databases.

Not all relational database
products will allow you to use ev­
ery knob I discuss. In fact, so many
products are available that I am
unable to discuss which allow
what kind of tuning or the specif­
ics of how to accomplish the tun­
ing for a particular product here.
However, the principles are quite
dear. The prospective relational
database user should ask the ven­
dor which apply if performance is
an issue.

Many mathematical tech­
niques for estimating performance
exist. By comparing actual perfor­
mance to the estimate, an educated
guess can be made about the na­
ture of the problem. Unfortunate­
ly, these depend on an intimate
knowledge of the database prod­
uct internals. I will discuss the em­
pirical concepts behind these
techniques.

''
IDENTIFY THE PROBLEM
After you have determined that
performance is an issue, the next
task is to determine the causes.
Though it would be nice if all
available products provided ~ tool
to analyze the current perfor­
mance characteristics of an SQL
statement, the available tools gen­
erally do not provide high-level
information. Usually, you must
know what questions to ask and
understand the answers.

Sources of difficulty may be:
User delays: When a user is­

sues a request to the database,
some application systems will al­
low the user to suspend processing
temporarily. Unless the database
product allows the administrator to
set a time out, this can mean that
other users must wait for the data­
base to release locks allocated to
the suspended· process. The ordi­
nary "coffee break" can introduce
major performance problems if not
handled properly.

Most operating systems al­
low the user to request an abort.
The mechanism may be disabled
or trapped by the programmer.
However, applications can handle
an abend incorrectly as regards
transaction management and re-

111 1 111 11 1111 1 111

The ditticulty is
knowing that a
problem exists
and ns causes

covery. A new . release of a data­
base product may also fail to detect
an abend and then systematically
handle the current transaction.
The policy may be to either abort
or commit pending transactions
when the user application exits.
Either default policy may be inap­
propriate for a given application.
It is even possible that no default
policy is implemented by the ven­
dor, in which case the application
developer must take on this task.

This problem typically ap-_
pears when locks are held by a
process for what appears to be un­
due periods of time.

User I / 0: The user process
may intersperse with database re­
quests and results processing with
unnecessary terminal 1/0, thus de­
laying the completion of da
processing. It may also make m
tiple requests of the databas
when a single request could do the
job. In this case, as in the previous,
the database software . cannot
know how to optimize the overall
process mix.

This problem, like the last,
also appears as locks held by the
user process for undue periods of
time.

CPU consumption: Detecting
excessive use of CPU time by a
database product can be difficult.
Measuring the use is not as diffi­
cult, since even if the vendor does
not provide a tool for this purpose,
most operating systems do. If that
fails, numerous third-party prod­
ucts are available for operating
system performance monitoring.

The difficulty is in knowing
that a problem exists. The most
common practice is' not analytical
but intuitive. With experience, a
database professional learns to ex­
pect a correspondence between
CPU consumption and ~e com­
plexity of an SQL statement, given
a particular database and environ­
ment. Variations on the SQL state­
ment can be run to make compari­
sons in CPU consumption. Even

JULY 1989
?II

this requires some sophistication,
since a small change in SQL syntax
can result in a large change in per­
formance even when things are
going well. If enough is known
about the product, an analysis of
the necessary CPU consumption
may be made. However, this is dif­
ficult and results in a rough esti­
mate at best.

Disk I/ 0: Based on the distri­
bution and volume of data affected
by an SQL statement, an estimate
of the amount of disk 1/0 required
may be made. It is important to
consider the disk 1/0 required in
the use of indexes as well as data
and data distribution. Of course,
the algorithms used in processing
indexes, the type and se-
lectivity of the index,
and the statement can
greatly affect the
number of disk
I/Os required. As
iil measuring CPU
time, actual disk
l/0 may~de-

termined
with vendor­
supplied tools
or operating~
tern performance monitoring tools.
Excessive disk I/0 is usually more
sensitive to the amount of data pro­
cessed than is excessive CPU
consumption.

Optimizer: Unnecessary disk
1/0 and CPU consumption may be
the optimizer's fault. The database
query optimizer should determine
which algorithms should be used
in processing portions of the SQL
statement and in what order. A so­
lution is called a strategy, access
plan, or query plan. If more than
one strategy can do the job, the op­
timizer· may not make the best
choice. Usually, a bad strategy is
so ba~ that something is obviously
wrong, considering the amount of

j

l
,l
!
\

);

\'
1 '.

the possibility that the optimizer
can select an efficient strategy.

SQL is intended to be a non­
procedural language, so you can
expect an SQL optimizer to per­
form better when faced with stan­
dard, nonprocedural requests that
the vendor has anticipated. It is
useful to ask your vendor for spe­
cific examples of complex SQL on
which their product performs
well. The examples can be com­
pared with the level of complexity
you expect your application to re­
quire, assuming that complexity is
not the result of poor database
design.

This perspective requires a
different view of relational data­
base applications. Although row­
at-a-time processing need not suf­
fer unduly in a normalized
relational database, the system has
clearly not been designed for such
procedural processing. But, few
applications demand row-at-a-time
transaction processing and high
transaction rates. Candidate appli­
cations for such processing require
recoverability and performance
for many concurrent users.

In a traditional implementa­
tion, transactions are tied to data
entry processes. The data entry op­
erator examines one or more re­
cords of existing data and makes
updates or inserts, requiring feed­
back of a commit with each trans­
action. Denormalization can help
performance in such cases, but this
record-at-a-time processing can be
accomplished nonprocedurally. If
the operator submits a qualified
update or insert, an examinination
of selected records within a trans­
action is then not needed. The re­
sults of the request can be dis­
played outside the transaction for
confirmation feedback.

In general, denormalization
is undesirable. However, it is not
always a possibility to circumvent
an existing application architec­
ture when migrating to a relation­
al database. Regardless of the strat­
egy's wisdom, pragmatic and
political pressures might demand
that the database system be
changed without initial alterations
in the application behavior. In­
deed, management often finds it
very difficult to permit changes to
the application behavior since this
has profound and visible oper-

I I I I I I I I I I I I I I I I I
Political

pressures may
change a

database system
ational effects on the business.

Faced with such a migration,
the database designer often must
pull out all stops to achieve the
necessary performance. Denorma­
lization should be the last of the
designer's efforts. If the database is
designed initially in third normal
form, selective changes can be
made to minimize the loss of flexi­
bility, data nonredundancy, and
data integrity. Care in isolating the
application code from the database
schema will allow these compro­
mises to be removed as faster
hardware and more sophisticated
database products are available.

SUMMARY TABLES
In some applications, SQL state­
ments need to be qualified, based
on the results of complex compu­
tation. For example, approval of an
ATM withdrawal may depend on
the average monthly balance. The
cost of computing the average
monthly balance with each with­
drawal may be too great. An alter­
native is to recompute a running
average with each transaction,
which costs less. The numbers to
recompute the average are stored
in a summary table.

This technique can be ex­
tremely beneficial in applications
using numeric data, especially fi­
nancial, scientific, engineering,
and manufacturing applications.
The result is greater concurrency
and better performance. Nonnu­
meric data can be reduced and
stored in summary tables as well,
but this is less common and bene­
ficial. The price for summary ta­
bles is possible loss of data integri­
ty and additional overhead during
writes to the summary tables.

FOREIGN KEYS
Even in a well-designed and high~
ly tuned database, the cost of joins
can be exorbitant. The join keys
might not be optimal for the typi­
cal joins used by the application. It
is important to remember that

JULY 1989
30

joins are used not only in selects
but to qualify deletions, insertions,
and updates as well. Consider the
following tables in third normal
form. Parts and suppliers have a
many-to-many relationship and
cities and suppliers have many-to­
one. Table A is quite deep and ta­
bles C and D are of moderate size:

TAil.LA(PART-1ll, Sl.FPl.IILID, PARLPRICE,
QTLSlff1.ID)

TABl..L.B(PART-1ll, QTLOOJiAl'I>)
TAllLC(Sl.FPl.IILID, ClTY)
TABl..L.D(aTY, PERCENLTAX)

Suppose we want to know
how much city tax was paid on
each part. We have to perform a
three-table join between tables A,
C, and D to find the percent tax to
be applied against the total price.
Table C contains CITY as a foreign
key referencing table D. However,
if table A also contained CITY as a
foreign key, the required join
would only be across two tables.

TABl..LA'(PART-1ll, SUPPUER......NO, CITY,
PAHL.PRICE, QTLSUPPLIED)

The problem is accentuated
with the original table A if we are
looking for the tax from cities that
require tax in a certain percentage
range and for a range of part num­
bers. This requires that the selec­
tion of rows from each table be
further restricted. The restriction
on table A' can be applied before
the join. The join can be processed
quicker if table A is used. It would
be more efficient if the restriction
and the second join could be pro­
cessed simultaneously. This is pos­
sible if the restriction is on the
new foreign key. An index on
the foreign key CITY in table A'
can significantly improve perfor­
mance. Of course, the more for­
eign keys introduced into an ap-

•

l
1
i
I
I

'

I
! '
i ,. ,,
I:
!

,,
I

plication, the greater the concern
should be with referential integri­
ty, and thus, maintenance. Noth­
ing is for free.

SYNTAX SENSITIVITY
Some query optimizers are sensi­
tive to the phrasing of an SQL
statement. While vendors can
sometimes provide the details of
optimizer syntax sensitivity and
are sometimes willing to do so, ex­
perience is the only certain means
of acquiring this information. The
details are subject to product ver­
sion changes, environment, and
data distribution.

Sometimes the problem is
detected when two supposedly
equivalent SQL statements per­
form dramatically differently. The
syntax differences can be as subtle
as the order in which tables are
referenced:

EXAMPLE 1.
1. SELECT APART_MI, B.SUPPl.EILNO FROM

TABLLB B, TABl.L.A A
2. SELECT APART _Ml, B.SUPPLEILNO FROM

TABLL.A A, TABLLB B

It can also be as complex and as
obvious as using a join as opposed
to a subquery and may actually
yield different results. For exam­
ple, assuming PART_NO is the
primary key in both tables, the fol­
lowing should be equivalent:

EXAhflf 2
1. SElfCT • FROM TABIL..A WHERE PART_MI

IN (SElfCT PART_MI FROM TABLLB WHERE
SUPPUEILNO > 10)

2. SELECT • FROM TABLLA WHER£ TABLL
A.PART_MI = TABLLB.PART_MI AM> TAB-
1.E.....B.SlJ>PllEILNO > 10

Depending on how the opti­
mizer handles these two SELECTs,
the results (for example, because
of NULL handling) or the perfor­
mance (for example, because of in­
dex selection) may differ signifi­
cantly. Often, the sensitivity to
syntax is only performance, mak­
ing it more difficult to observe.

In the absence of further in­
formation, several tactics can be
used to test for syntax sensitivity.
First, rearrange the order of the ta­
ble and column references. Then
rearrange the order in which
clauses appear. Next, use a more
obvious alternate form of the

I I I I I I I I I I I I I I I I I
Denormalization

should be the last
step for the

designer
query-a subquery if you are not
using one or eliminating a sub­
query if you are. Finally, rewrite
the clauses using DeMorgan's
Laws. This frequently yields re­
sults, since the cost of processing
AND, OR, and NOT may be asym­
metrical in otherwise equivalent
statements.

OPTIMIZER INSTRUCTION
Some vendors allow the developer
to instruct the optimizer on the or­
der in which to use indexes and
access tables, the granularity of
locks (table, page, row), and the
degree of consistency (when to re­
lease or share locks). these consid­
erations can affect performance
dramatically. However, · such in­
structions are not part of standard
SQL and, thus, are not portable.
Furthermore, the appropriate
instructions are likely to change as
the depth or width of tables or
even the data types of columns
evolve. As a result, such perfor­
mance optimization can require on­
going maintenance.

Forcing the use of specific in­
dexes requires an understanding
of index selectivity. Selectivity is
roughly the (average) number of
rows a single index entry refer­
ences. Using an index with greater
selectivity (closer to one) will re­
sult in better performance. How­
ever, greater selectivity can mean
a greater index update cost.

Forcing the access of tables is
done by forcing the order in
which indexes on the tables are
used. You should access tables in
an order that will keep the work­
ing set of data smallest. Thus,
more restricted joins should be
performed first, especially if an in­
dex is available to accommodate
the join.

The cost of acquiring locks
can be minimized by forcing the
scope of lock acquisition and its
order during the course of a trans­
action (usually consisting of multi­
ple SQL statements). If a signifi-

JULY 1989
32

cant number of the rows in the
accessed pages need to be locked,
you should probably force page
locking. If a significant number of
the accessed pages of a table need
to be locked, you should probably
force table locking. A significant
number is the number of lock ac­
quisitions at the lower of the two
levels of lock granularity which
just exceed the cost of acquiring a
single lock at the higher level. The
issue is more complex than this, so
a test may be in order.

The degree of consistency
(zero to four) that a particular ap­
plication may require determines
the amount of lock overhead and
serialization. If the product allows
you to force just the degree of con­
sistency you need, considerable
savings are possible. If the applica­
tion requires a high degree of con­
currency but users typically are
not affecting the same data pages,
a lower degree of consistency can
eliminate unnecessary serializing
of application transactions.

TRICKING THE OPTIMIZER
If the optimizer uses information
maintained in the database and
that information can be updated,
the optimizer can be tricked into
selecting a particular processing
strategy. For example, when faced
with using more than one index
on a given table, some optimizers
look at the selectivity of indexes to
determine which to use. By modi­
fying the stored selectivities of the
indexes, the index ranking can be
influenced.

Al though this tactic should
be avoided, it may be necessary at
times. Unless the product auto­
matically updates the information
it uses in strategy selection fre­
quently, some manual mainte­
nance is required. Some products
leave maintenance of particular
parameters to the database admin­
istrator's manual intervention, in
which case the optimizer must be
influenced.

NONPROCEDURALIZATION
The benefits of using less proce­
dural SQL statements include
greater concurrency, better cach­
ing of data, and less disk 1/0. Nat­
uralization is used to combat un­
necessary user I/0. It is a common
mistake to develop a relational

i
;,

database application that uses
transactions consisting of very
simple SQL statements. Rather
than relying on the nonprocedura­
lity of SQL and relational data­
bases, third-generation language
(3GL) developers may be inclined
to treat relational access as one
does procedural file access. This
does not allow the optimizer or
scheduler to do their work, since
information about the intended
result is not made available and a
more restrictive sequence of
operations is imposed.

Suppose an application is
spending most of its time passing
requests and results back and forth
to the database. If there is no sig­
nificant intermediate processing,
the series of requests might
be written in fewer SQL
statements. When pos­
sible, an application
should issue the high-
est level SQL request pos­
sible to the database. Then,
if the product performs poorly,
these requests are able to be selec­
tively broken into multiple re­
quests and code written to support
them. In other words, relational
database requests should replace
procedural functions from the top­
down, instead of from the bottom­
up.

Typically, the level of com­
plexity of an SQL statement will
exceed the user's ability to under­
stand it before it will confuse the
optimizer. If you happen to be
adept with SQL, you can write
,SQL that you understand, which
causes the optimizer to select a
poor strategy.

The benefits of making more
nonprocedural requests of the
database have a practical limit.
However, it has been my experi­
ence that this limit is rarely ap­
proached. Of course, the ability of
others to understand and maintain
such code must be considered.

PROCEDURALIZATION
As noted, sometimes the effect of
an SQL statement can be achieved
with multiple SQL statements.
This should be done as a next-to­
last resort in tuning for perfor­
mance (denormalization is the
last-ditch effort to achieve neces­
sary performance). However, if
the complexity of the SQL results

I I I I I I I I I I I I I I I I I
Even in a highly
tuned database,
the cost or joins
can be exorbitant
in intolerable performance, the
statement can be broken into mul­
tiple statements. Proceduralization
helps an ailing optimizer.

More often than not, proce­
duralizing an SQL statement re­
quires that explicit transaction
control be asserted so the new se­
quence of SQL statements appears
as a single transaction to the data­
base. This can improve perfor-

mance at the cost of concur-
rency, although I have

seen many cases result­
ing in improved con­
currency when the op-

timizer was already
doing the job poorly. Ulti­

mately, if you have a need for
both concurrency and perfor.;
mance and have exhausted all oth­
er options, the best bet for you is
to test the effects of pro­
ceduralization.

Sometimes, a temporary table
to store intermediate results must
be created to proceduralize the
statement. Certain products do not
allow the creation of temporary ta­
bles within a transaction, so the
intermediate results can be insert­
ed in an existing table and deleted
when no longer needed.

STORAGE ALLOCATION
Controlling storage allocation is
one technique for improving disk
I/0. Inter-table clustering is an ex­
ample of detailed storage alloca­
tion to help performance. By forc­
ing data commonly accessed
together into contiguous storage, a
single disk I/0 can do the job of
two or more. Intra-table clustering
(physically storing a table in sort
oder) .helps when a table is ac­
cessed in a particular order.

Commonly joined tables can
be placed on separate disk drives
to improve performance, assuming
the hardware allows the drives to
be controlled in parallel. Similarly,
recovery logs can be placed on
separate drives.

Some products let tables be

JULY 1989
34

distributed horizontally across
available disk drives. This tech­
nique can be effective where paral­
lel processing of the data is possible
and the application requires that a
lot of rows be scanned in each
transaction.

Managing the rate at which
dynamic allocation occurs can bal­
ance performance over time so
that each transaction is less likely
to require space during peak per­
formance periods.

STORED PROCEDURES
More and more relational database
vendors are supporting stored pro­
cedures (also known as stored
commands or precompiled com­
mands). Stored procedures allow
the developer to combine multiple
SQL statements into a single user­
defined and named command,
thereby effectively making SQL an
extendible language. Unfortunate­
ly, current implementations have
restrictions on the -statements that
can be processed in a stored proce•
dure.

Because most implementa­
tions perform some preliminary
processing of SQL statements,
stored procedures can improve
performance by reducing the
per execution overhead. The dis­
advantage is that the parser must
translate a growing list of stored
procedure names. The primary
performance advantage is the
elimination of redundant parsing
and optimization overhead, reduc­
ing CPU consumption.

TRIGGERS
A database trigger is a set of user­
defined conditional actions that
occur on update, deletion, or in­
sert to a table that must be scanned
(to determine if the action should
be triggered) is too large, the per
transaction overhead will outweigh
the benefits. The number of locks
held by a complex trigger can re­
duce concurrency. As with other
potential performance . optimiz­
ations, triggers .should be used
judiciously.

TRANSACTION MANAGEMENT
A series of SQL statements might
be bracketed by explicit transac­
tion control for two reasons. The
first is to ensure that the entire se­
ries of statements can be rolled

back if any failure occurs. The sec­
ond is insurance against reading
another user's dirty data. Typical­
ly, the scope (in time and data) of
a transaction is managed under a
worst-case rule. Even if rollback of
the entire set of transactions is not
desired, a COMMIT will not be is­
sued until the entire sequence of
SQL statements is completed.

Through careful examination
of the relationship between trans­
actions, the sequence transaction
requests can be controlled and the
scope of transactions reduced. Al­
though this higher level of trans­
action management must be
achieved by 3GL code, insuring
that multiple transactions are nev­
er submitted that update the same
data pages is highly effective.

If the designer or developer
has such privileged information,
the application can control concur­
rency in a way that the database
scheduler cannot is not able to
without excessive serialization. By
introducing slight delays in the
submission of database transac­
tions and coordinating these
across users, conflicts between us­
ers can be removed, allowing even
more concurrency and greater sys­
tem throughput.

LOGGING OVERHEAD
Overhead due to transaction log­
ging can sometimes be reduced by
minimizing the amount of data in­
volved· in writes to the database.
By selecting a dense rather than
sparse encoding of data fields, the
width of tables can be significant­
ly reduced. This in turn reduces
the number of bytes which must
be processed-per row of data. The
trade-off is that users may no long­
er recognize the data's meaning,
although this can usually be han­
dled through views.

Similarly, selecting a data en­
coding that converts a disjunctive
list into a range is appropriate if
the typical access pattern involves
such a range. Then, by adding an
index on the particular column,
the SQL statements will access
fewer index pages inore quickly.

It is useful to encode primary
keys as integers, with successive
rows as an increment of the high­
est primary key value. The origi­
nal primary key becomes a candi­
date key in the table. The result of

I I I I' I I I I I I I I I I I I I
An application

should issue the
highest level SQL
request possible

this compression is that the prima­
ry key index pages can reference
the greatest number of rows. In
addition, once the key is known in
a particular transaction, it can be
used to eliminate unnecessary
comparisons between compound
keys and their component values.

BUFFER SIZES
The allocation of the memory to
be used by the database for query
parsing, input buffering, results
processing, and output buffering
can improve performance. Howev­
er, it is necessary to know the
amount of memory used by the
typical transaction; since most
products provide this as a system
tuning parameter rather than a pa­
rameter to tune the individual
transaction.

During heavy update and in­
sert periods, the input buff­

possible by committing outstanding
transactions, emphasizes the impor­
tance of application architecture.
The ideal relational application nev­
er imposes delays on the relational
database, either during input or
output.

OTHER SYSTEM PARAMETERS
Most vendors allow the database
administrator to control many sys­
tem parameters such as the number
of concurrent users, the application
buffer space per user, open cursors,
concurrent processes, open tables
per user, and memory allocated for
sort-merge operations. In addition,
many operating system parameters
may affect the performance of the
database. For example, the number
of files open at any time, the maxi­
mum amount of disk space allocat­
ed per file; and the maximum num­
ber of files in a directory can affect
system performance and database
administration. These parameters
vary from operating system to oper­
ating system, as well as from ven­
dor to vendor.

The database vendor should
provide guidelines for optimizing
both sets of parameters for your in­

stallation. However, because
er may become over­
loaded, requiring a
temporary hold on
further processing or
perhaps flushing the •

of the degree of sensitivity
to your application and
the hardware and soft­
ware environment, you

should make an applica­
tions expert and an operating

systems expert available during the
tuning process.

buffer to disk. Both reduce
the system throughput, so that a
larger input buffer may be desir­
able.

It is possible to create an SQL
statement nested so deep that the
parser does not have enough work­
ing memory to parse the query. In a
similar way, multiple long state­
ments may overload the parse buff­
er if the parser allows multiple
statements to be held in the buffer
simultaneously.

Working buffers are used for
processing intermediate results.
Typical intermediate processing
operations include sorting and
merging of · two or more tables.
Again, if the intermediate results
are too large to be cached in mem­
ory, they must be swapped to disk.

If the final results are avail­
able faster than the application can
accept them, output buffer sizes be­
come important. This, along with
the need to release locks as soon as

DATABASE PROGRAMMING & DESIGN
35

Tuning relational database
applications for performance re­
quires system thinking. It is not
enough to be proficient in SQL or
database normalization. While ex­
pertise in the technical aspects of
relational database systems and
performance modeling are impor­
tant, experience with the environ­
ment using the database product
of choice is what counts. One last
piece of advice: don't ignore how
the application uses the database.
It affects not only response time,
but also that aspect of performance
with which production systems are
often concerned-throughput. •

David McGoveran is president of Alterna­
tive Technologies in Santa Cruz, Calif., a
consulting firm that has been specializ­
ing in relational database applications for
the last eight years.

I
: I . : '. : i
: j
:)

, r

: ' : I
i I
: I
I l i;
I a: .·

! l
i ~

! : : :;

'' ; ~
i;
! ~
~ i ;;;
i ;
ii
I'

I l
~ t

