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BY DAVID McGOVERAN 

System thinking and experience, not just technical expertise, are 
what the relational user needs to tune · complex database applications 

of Relational 
Performance 

THE ABILITY TO 
tune a relational 

databa5e application for perfor­
mance is a fine art. If you want 
throughput, you must be CaJ'.eful to 
distingUish between tuning the 
database for performance and tun­
ing the entire system for through· 
put. The two are not always com­
patible. In either case, relational 
performance tuning takes getting 
used to. 

The problem is obvious 
when you realize that relational 
databases should protect the user 
from knowledge of how it handles 
the requests; requests may come 
not only from database users but 
also from production programs 
and database administrators. A 
DBMS true to the relational prom­
ise should always respond to re­
quests efficiently. The system 
would create and use indexes as 
needed and disk allocation would 
be optimized to minimize storage 
consumption and access time si-

Tuning 
• multaneously. Transaction man­

agement and recovery would nev­
er interfere with concurrency. SQL 
allowing the same result to be ac­
complished from syntactically dif­
ferent statements would never af­
fect performance . . 

Unfortunately, no one has 
been able to reach this ideal in 
practice. To be fair, commercial re­
lational database products are im­
proving in this regard. However, 
such a level of intelligence in a . 
database may ~ neither ac.hiev­
able nor desirable. We are not like­
ly to solve the inherent problems 
for quite a while. Until we are able 
to, database performance tuning 
will be an issue for many produc­
tion relational applications. 
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Some professionals believe 
that faster and less expensive 
hardware, more sophisticated rela­
tional database products,.and dis­
tributed database technology will 
alleviate the need for performance 
tuning. If the user commwtjif s 
needs typically did not expand to 
consume · available resources, I 
would agree. But the volume of 
desired software applications in a 
production organization tends to 
grow faster than the acquisition of 
the hardware required to imple­
ment it. For certain production re­
lational applications, hardware re­
quirements frequently are under­
estimated during design and 
development. The result is a need 
for performance tuning to deploy 
the system or to prolong the life of 
the hardware platform. 

I call the class of production 
relational applications that may 
need performance tuning "com­
plex database applications." A 
number of thresholds, when ex-
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ceeded, cause an application to be 
classified as complex. Among the 
thresholds are: 

D Number of tables. 
D Depth of tables. 
D Width of tables. 
D Number of concurrent 

users. 
D Scope of transactions. 
D Number of tables in a typi-

cal join. 
D Total database size. 
D Transaction rate. 
D General transaction com­

plexity. 
The threshold for each of 

these parameters depends on the 
hardware platform, operating sys­
tem, and database product by ver­
sion. The thresholds are altered by 
the mix of other nonrelational 
work that must be done in the 
same environment, since these ef­
fectively lower the available ca­
pacity. It is not sufficient to know 
that none of the thresholds is ex­
ceeded. If enough of the param-

eters are close to their threshold 
values, the application may quali­
fy as complex. 

Clearly, selecting a database 
product depends on analyzing the 
requirements and a knowledge of 
the performance characteristics of 
available products. In mission­
critical and complex applications, 
any amount of performance tun­
ing may not result in a viable sys­
tem • if the wrong selection has 
been made. 

Transaction rate benchmarks 
can be quite useful in analyzing 
the performance characteristics of 
a relational database, but proper 
interpretation of the benchmark 
requires a knowledge of the prod­
uct. Then, along with judicious es-
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timates of the application require­
ments, the experienced database 
professional can estimate perfor­
mance using the product. Compar­
ing transaction rates between 
products has little relevance to the 
performance that can be expected 
in production. If the expertise is 
not available to perform such an 
analysis, performance modeling 
and analysis, in which the applica­
tion transaction mix is simulated 
in the target environment, can 
yield far more useful information. 

Assuming you have not been 
placed in such an untenable posi­
tion, we will examine some of the 
knobs that you may turn to tune a 
relational database application. I 
use the term relational database 
application, not relational database 
management system; in more than ~ 

eight years of relational database ~ 
applications consulting, I found ~ 
most problems of this sort are the ~ 
result of using the relational data- ~ 
base product incompatibly with ~ 
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the assumptions of nonprocedural 
data processing. So, I will briefly 
discuss some characteristics of ap­
plications appropriately using re­
lational databases. 

Not all relational database 
products will allow you to use ev­
ery knob I discuss. In fact, so many 
products are available that I am 
unable to discuss which allow 
what kind of tuning or the specif­
ics of how to accomplish the tun­
ing for a particular product here. 
However, the principles are quite 
dear. The prospective relational 
database user should ask the ven­
dor which apply if performance is 
an issue. 

Many mathematical tech­
niques for estimating performance 
exist. By comparing actual perfor­
mance to the estimate, an educated 
guess can be made about the na­
ture of the problem. Unfortunate­
ly, these depend on an intimate 
knowledge of the database prod­
uct internals. I will discuss the em­
pirical concepts behind these 
techniques. 

'' 
IDENTIFY THE PROBLEM 
After you have determined that 
performance is an issue, the next 
task is to determine the causes. 
Though it would be nice if all 
available products provided ~ tool 
to analyze the current perfor­
mance characteristics of an SQL 
statement, the available tools gen­
erally do not provide high-level 
information. Usually, you must 
know what questions to ask and 
understand the answers. 

Sources of difficulty may be: 
User delays: When a user is­

sues a request to the database, 
some application systems will al­
low the user to suspend processing 
temporarily. Unless the database 
product allows the administrator to 
set a time out, this can mean that 
other users must wait for the data­
base to release locks allocated to 
the suspended· process. The ordi­
nary "coffee break" can introduce 
major performance problems if not 
handled properly. 

Most operating systems al­
low the user to request an abort. 
The mechanism may be disabled 
or trapped by the programmer. 
However, applications can handle 
an abend incorrectly as regards 
transaction management and re-
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The ditticulty is 
knowing that a 
problem exists 
and ns causes 

covery. A new . release of a data­
base product may also fail to detect 
an abend and then systematically 
handle the current transaction. 
The policy may be to either abort 
or commit pending transactions 
when the user application exits. 
Either default policy may be inap­
propriate for a given application. 
It is even possible that no default 
policy is implemented by the ven­
dor, in which case the application 
developer must take on this task. 

This problem typically ap-_ 
pears when locks are held by a 
process for what appears to be un­
due periods of time. 

User I / 0: The user process 
may intersperse with database re­
quests and results processing with 
unnecessary terminal 1/0, thus de­
laying the completion of da 
processing. It may also make m 
tiple requests of the databas 
when a single request could do the 
job. In this case, as in the previous, 
the database software . cannot 
know how to optimize the overall 
process mix. 

This problem, like the last, 
also appears as locks held by the 
user process for undue periods of 
time. 

CPU consumption: Detecting 
excessive use of CPU time by a 
database product can be difficult. 
Measuring the use is not as diffi­
cult, since even if the vendor does 
not provide a tool for this purpose, 
most operating systems do. If that 
fails, numerous third-party prod­
ucts are available for operating 
system performance monitoring. 

The difficulty is in knowing 
that a problem exists. The most 
common practice is' not analytical 
but intuitive. With experience, a 
database professional learns to ex­
pect a correspondence between 
CPU consumption and ~e com­
plexity of an SQL statement, given 
a particular database and environ­
ment. Variations on the SQL state­
ment can be run to make compari­
sons in CPU consumption. Even 
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this requires some sophistication, 
since a small change in SQL syntax 
can result in a large change in per­
formance even when things are 
going well. If enough is known 
about the product, an analysis of 
the necessary CPU consumption 
may be made. However, this is dif­
ficult and results in a rough esti­
mate at best. 

Disk I/ 0: Based on the distri­
bution and volume of data affected 
by an SQL statement, an estimate 
of the amount of disk 1/0 required 
may be made. It is important to 
consider the disk 1/0 required in 
the use of indexes as well as data 
and data distribution. Of course, 
the algorithms used in processing 
indexes, the type and se-
lectivity of the index, 
and the statement can 
greatly affect the 
number of disk 
I/Os required. As 
iil measuring CPU 
time, actual disk 
l/0 may~de-

termined 
with vendor­
supplied tools 
or operating~ 
tern performance monitoring tools. 
Excessive disk I/0 is usually more 
sensitive to the amount of data pro­
cessed than is excessive CPU 
consumption. 

Optimizer: Unnecessary disk 
1/0 and CPU consumption may be 
the optimizer's fault. The database 
query optimizer should determine 
which algorithms should be used 
in processing portions of the SQL 
statement and in what order. A so­
lution is called a strategy, access 
plan, or query plan. If more than 
one strategy can do the job, the op­
timizer· may not make the best 
choice. Usually, a bad strategy is 
so ba~ that something is obviously 
wrong, considering the amount of 
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the possibility that the optimizer 
can select an efficient strategy. 

SQL is intended to be a non­
procedural language, so you can 
expect an SQL optimizer to per­
form better when faced with stan­
dard, nonprocedural requests that 
the vendor has anticipated. It is 
useful to ask your vendor for spe­
cific examples of complex SQL on 
which their product performs 
well. The examples can be com­
pared with the level of complexity 
you expect your application to re­
quire, assuming that complexity is 
not the result of poor database 
design. 

This perspective requires a 
different view of relational data­
base applications. Although row­
at-a-time processing need not suf­
fer unduly in a normalized 
relational database, the system has 
clearly not been designed for such 
procedural processing. But, few 
applications demand row-at-a-time 
transaction processing and high 
transaction rates. Candidate appli­
cations for such processing require 
recoverability and performance 
for many concurrent users. 

In a traditional implementa­
tion, transactions are tied to data 
entry processes. The data entry op­
erator examines one or more re­
cords of existing data and makes 
updates or inserts, requiring feed­
back of a commit with each trans­
action. Denormalization can help 
performance in such cases, but this 
record-at-a-time processing can be 
accomplished nonprocedurally. If 
the operator submits a qualified 
update or insert, an examinination 
of selected records within a trans­
action is then not needed. The re­
sults of the request can be dis­
played outside the transaction for 
confirmation feedback. 

In general, denormalization 
is undesirable. However, it is not 
always a possibility to circumvent 
an existing application architec­
ture when migrating to a relation­
al database. Regardless of the strat­
egy's wisdom, pragmatic and 
political pressures might demand 
that the database system be 
changed without initial alterations 
in the application behavior. In­
deed, management often finds it 
very difficult to permit changes to 
the application behavior since this 
has profound and visible oper-
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pressures may 
change a 

database system 
ational effects on the business. 

Faced with such a migration, 
the database designer often must 
pull out all stops to achieve the 
necessary performance. Denorma­
lization should be the last of the 
designer's efforts. If the database is 
designed initially in third normal 
form, selective changes can be 
made to minimize the loss of flexi­
bility, data nonredundancy, and 
data integrity. Care in isolating the 
application code from the database 
schema will allow these compro­
mises to be removed as faster 
hardware and more sophisticated 
database products are available. 

SUMMARY TABLES 
In some applications, SQL state­
ments need to be qualified, based 
on the results of complex compu­
tation. For example, approval of an 
ATM withdrawal may depend on 
the average monthly balance. The 
cost of computing the average 
monthly balance with each with­
drawal may be too great. An alter­
native is to recompute a running 
average with each transaction, 
which costs less. The numbers to 
recompute the average are stored 
in a summary table. 

This technique can be ex­
tremely beneficial in applications 
using numeric data, especially fi­
nancial, scientific, engineering, 
and manufacturing applications. 
The result is greater concurrency 
and better performance. Nonnu­
meric data can be reduced and 
stored in summary tables as well, 
but this is less common and bene­
ficial. The price for summary ta­
bles is possible loss of data integri­
ty and additional overhead during 
writes to the summary tables. 

FOREIGN KEYS 
Even in a well-designed and high~ 
ly tuned database, the cost of joins 
can be exorbitant. The join keys 
might not be optimal for the typi­
cal joins used by the application. It 
is important to remember that 
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joins are used not only in selects 
but to qualify deletions, insertions, 
and updates as well. Consider the 
following tables in third normal 
form. Parts and suppliers have a 
many-to-many relationship and 
cities and suppliers have many-to­
one. Table A is quite deep and ta­
bles C and D are of moderate size: 

TAil.LA( PART-1ll, Sl.FPl.IILID, PARLPRICE, 
QTLSlff1.ID) 

TABl..L.B( PART-1ll, QTLOOJiAl'I>) 
TAllLC( Sl.FPl.IILID, ClTY) 
TABl..L.D( aTY, PERCENLTAX) 

Suppose we want to know 
how much city tax was paid on 
each part. We have to perform a 
three-table join between tables A, 
C, and D to find the percent tax to 
be applied against the total price. 
Table C contains CITY as a foreign 
key referencing table D. However, 
if table A also contained CITY as a 
foreign key, the required join 
would only be across two tables. 

TABl..LA'( PART-1ll, SUPPUER......NO, CITY, 
PAHL.PRICE, QTLSUPPLIED) 

The problem is accentuated 
with the original table A if we are 
looking for the tax from cities that 
require tax in a certain percentage 
range and for a range of part num­
bers. This requires that the selec­
tion of rows from each table be 
further restricted. The restriction 
on table A' can be applied before 
the join. The join can be processed 
quicker if table A is used. It would 
be more efficient if the restriction 
and the second join could be pro­
cessed simultaneously. This is pos­
sible if the restriction is on the 
new foreign key. An index on 
the foreign key CITY in table A' 
can significantly improve perfor­
mance. Of course, the more for­
eign keys introduced into an ap-

• 
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plication, the greater the concern 
should be with referential integri­
ty, and thus, maintenance. Noth­
ing is for free. 

SYNTAX SENSITIVITY 
Some query optimizers are sensi­
tive to the phrasing of an SQL 
statement. While vendors can 
sometimes provide the details of 
optimizer syntax sensitivity and 
are sometimes willing to do so, ex­
perience is the only certain means 
of acquiring this information. The 
details are subject to product ver­
sion changes, environment, and 
data distribution. 

Sometimes the problem is 
detected when two supposedly 
equivalent SQL statements per­
form dramatically differently. The 
syntax differences can be as subtle 
as the order in which tables are 
referenced: 

EXAMPLE 1. 
1. SELECT APART_MI, B.SUPPl.EILNO FROM 

TABLLB B, TABl.L.A A 
2. SELECT APART _Ml, B.SUPPLEILNO FROM 

TABLL.A A, TABLLB B 

It can also be as complex and as 
obvious as using a join as opposed 
to a subquery and may actually 
yield different results. For exam­
ple, assuming PART_NO is the 
primary key in both tables, the fol­
lowing should be equivalent: 

EXAhflf 2 
1. SElfCT • FROM TABIL..A WHERE PART_MI 

IN (SElfCT PART_MI FROM TABLLB WHERE 
SUPPUEILNO > 10) 

2. SELECT • FROM TABLLA WHER£ TABLL 
A.PART_MI = TABLLB.PART_MI AM> TAB-
1.E.....B.SlJ>PllEILNO > 10 

Depending on how the opti­
mizer handles these two SELECTs, 
the results (for example, because 
of NULL handling) or the perfor­
mance (for example, because of in­
dex selection) may differ signifi­
cantly. Often, the sensitivity to 
syntax is only performance, mak­
ing it more difficult to observe. 

In the absence of further in­
formation, several tactics can be 
used to test for syntax sensitivity. 
First, rearrange the order of the ta­
ble and column references. Then 
rearrange the order in which 
clauses appear. Next, use a more 
obvious alternate form of the 
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Denormalization 

should be the last 
step for the 

designer 
query-a subquery if you are not 
using one or eliminating a sub­
query if you are. Finally, rewrite 
the clauses using DeMorgan's 
Laws. This frequently yields re­
sults, since the cost of processing 
AND, OR, and NOT may be asym­
metrical in otherwise equivalent 
statements. 

OPTIMIZER INSTRUCTION 
Some vendors allow the developer 
to instruct the optimizer on the or­
der in which to use indexes and 
access tables, the granularity of 
locks (table, page, row), and the 
degree of consistency (when to re­
lease or share locks). these consid­
erations can affect performance 
dramatically. However, · such in­
structions are not part of standard 
SQL and, thus, are not portable. 
Furthermore, the appropriate 
instructions are likely to change as 
the depth or width of tables or 
even the data types of columns 
evolve. As a result, such perfor­
mance optimization can require on­
going maintenance. 

Forcing the use of specific in­
dexes requires an understanding 
of index selectivity. Selectivity is 
roughly the (average) number of 
rows a single index entry refer­
ences. Using an index with greater 
selectivity (closer to one) will re­
sult in better performance. How­
ever, greater selectivity can mean 
a greater index update cost. 

Forcing the access of tables is 
done by forcing the order in 
which indexes on the tables are 
used. You should access tables in 
an order that will keep the work­
ing set of data smallest. Thus, 
more restricted joins should be 
performed first, especially if an in­
dex is available to accommodate 
the join. 

The cost of acquiring locks 
can be minimized by forcing the 
scope of lock acquisition and its 
order during the course of a trans­
action (usually consisting of multi­
ple SQL statements). If a signifi-
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cant number of the rows in the 
accessed pages need to be locked, 
you should probably force page 
locking. If a significant number of 
the accessed pages of a table need 
to be locked, you should probably 
force table locking. A significant 
number is the number of lock ac­
quisitions at the lower of the two 
levels of lock granularity which 
just exceed the cost of acquiring a 
single lock at the higher level. The 
issue is more complex than this, so 
a test may be in order. 

The degree of consistency 
(zero to four) that a particular ap­
plication may require determines 
the amount of lock overhead and 
serialization. If the product allows 
you to force just the degree of con­
sistency you need, considerable 
savings are possible. If the applica­
tion requires a high degree of con­
currency but users typically are 
not affecting the same data pages, 
a lower degree of consistency can 
eliminate unnecessary serializing 
of application transactions. 

TRICKING THE OPTIMIZER 
If the optimizer uses information 
maintained in the database and 
that information can be updated, 
the optimizer can be tricked into 
selecting a particular processing 
strategy. For example, when faced 
with using more than one index 
on a given table, some optimizers 
look at the selectivity of indexes to 
determine which to use. By modi­
fying the stored selectivities of the 
indexes, the index ranking can be 
influenced. 

Al though this tactic should 
be avoided, it may be necessary at 
times. Unless the product auto­
matically updates the information 
it uses in strategy selection fre­
quently, some manual mainte­
nance is required. Some products 
leave maintenance of particular 
parameters to the database admin­
istrator's manual intervention, in 
which case the optimizer must be 
influenced. 

NONPROCEDURALIZATION 
The benefits of using less proce­
dural SQL statements include 
greater concurrency, better cach­
ing of data, and less disk 1/0. Nat­
uralization is used to combat un­
necessary user I/0. It is a common 
mistake to develop a relational 
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database application that uses 
transactions consisting of very 
simple SQL statements. Rather 
than relying on the nonprocedura­
lity of SQL and relational data­
bases, third-generation language 
(3GL) developers may be inclined 
to treat relational access as one 
does procedural file access. This 
does not allow the optimizer or 
scheduler to do their work, since 
information about the intended 
result is not made available and a 
more restrictive sequence of 
operations is imposed. 

Suppose an application is 
spending most of its time passing 
requests and results back and forth 
to the database. If there is no sig­
nificant intermediate processing, 
the series of requests might 
be written in fewer SQL 
statements. When pos­
sible, an application 
should issue the high-
est level SQL request pos­
sible to the database. Then, 
if the product performs poorly, 
these requests are able to be selec­
tively broken into multiple re­
quests and code written to support 
them. In other words, relational 
database requests should replace 
procedural functions from the top­
down, instead of from the bottom­
up. 

Typically, the level of com­
plexity of an SQL statement will 
exceed the user's ability to under­
stand it before it will confuse the 
optimizer. If you happen to be 
adept with SQL, you can write 
,SQL that you understand, which 
causes the optimizer to select a 
poor strategy. 

The benefits of making more 
nonprocedural requests of the 
database have a practical limit. 
However, it has been my experi­
ence that this limit is rarely ap­
proached. Of course, the ability of 
others to understand and maintain 
such code must be considered. 

PROCEDURALIZATION 
As noted, sometimes the effect of 
an SQL statement can be achieved 
with multiple SQL statements. 
This should be done as a next-to­
last resort in tuning for perfor­
mance (denormalization is the 
last-ditch effort to achieve neces­
sary performance). However, if 
the complexity of the SQL results 
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Even in a highly 
tuned database, 
the cost or joins 
can be exorbitant 
in intolerable performance, the 
statement can be broken into mul­
tiple statements. Proceduralization 
helps an ailing optimizer. 

More often than not, proce­
duralizing an SQL statement re­
quires that explicit transaction 
control be asserted so the new se­
quence of SQL statements appears 
as a single transaction to the data­
base. This can improve perfor-

mance at the cost of concur-
rency, although I have 

seen many cases result­
ing in improved con­
currency when the op-

timizer was already 
doing the job poorly. Ulti­

mately, if you have a need for 
both concurrency and perfor.; 
mance and have exhausted all oth­
er options, the best bet for you is 
to test the effects of pro­
ceduralization. 

Sometimes, a temporary table 
to store intermediate results must 
be created to proceduralize the 
statement. Certain products do not 
allow the creation of temporary ta­
bles within a transaction, so the 
intermediate results can be insert­
ed in an existing table and deleted 
when no longer needed. 

STORAGE ALLOCATION 
Controlling storage allocation is 
one technique for improving disk 
I/0. Inter-table clustering is an ex­
ample of detailed storage alloca­
tion to help performance. By forc­
ing data commonly accessed 
together into contiguous storage, a 
single disk I/0 can do the job of 
two or more. Intra-table clustering 
(physically storing a table in sort 
oder) .helps when a table is ac­
cessed in a particular order. 

Commonly joined tables can 
be placed on separate disk drives 
to improve performance, assuming 
the hardware allows the drives to 
be controlled in parallel. Similarly, 
recovery logs can be placed on 
separate drives. 

Some products let tables be 
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distributed horizontally across 
available disk drives. This tech­
nique can be effective where paral­
lel processing of the data is possible 
and the application requires that a 
lot of rows be scanned in each 
transaction. 

Managing the rate at which 
dynamic allocation occurs can bal­
ance performance over time so 
that each transaction is less likely 
to require space during peak per­
formance periods. 

STORED PROCEDURES 
More and more relational database 
vendors are supporting stored pro­
cedures (also known as stored 
commands or precompiled com­
mands). Stored procedures allow 
the developer to combine multiple 
SQL statements into a single user­
defined and named command, 
thereby effectively making SQL an 
extendible language. Unfortunate­
ly, current implementations have 
restrictions on the -statements that 
can be processed in a stored proce• 
dure. 

Because most implementa­
tions perform some preliminary 
processing of SQL statements, 
stored procedures can improve 
performance by reducing the 
per execution overhead. The dis­
advantage is that the parser must 
translate a growing list of stored 
procedure names. The primary 
performance advantage is the 
elimination of redundant parsing 
and optimization overhead, reduc­
ing CPU consumption. 

TRIGGERS 
A database trigger is a set of user­
defined conditional actions that 
occur on update, deletion, or in­
sert to a table that must be scanned 
(to determine if the action should 
be triggered) is too large, the per 
transaction overhead will outweigh 
the benefits. The number of locks 
held by a complex trigger can re­
duce concurrency. As with other 
potential performance . optimiz­
ations, triggers .should be used 
judiciously. 

TRANSACTION MANAGEMENT 
A series of SQL statements might 
be bracketed by explicit transac­
tion control for two reasons. The 
first is to ensure that the entire se­
ries of statements can be rolled 



back if any failure occurs. The sec­
ond is insurance against reading 
another user's dirty data. Typical­
ly, the scope (in time and data) of 
a transaction is managed under a 
worst-case rule. Even if rollback of 
the entire set of transactions is not 
desired, a COMMIT will not be is­
sued until the entire sequence of 
SQL statements is completed. 

Through careful examination 
of the relationship between trans­
actions, the sequence transaction 
requests can be controlled and the 
scope of transactions reduced. Al­
though this higher level of trans­
action management must be 
achieved by 3GL code, insuring 
that multiple transactions are nev­
er submitted that update the same 
data pages is highly effective. 

If the designer or developer 
has such privileged information, 
the application can control concur­
rency in a way that the database 
scheduler cannot is not able to 
without excessive serialization. By 
introducing slight delays in the 
submission of database transac­
tions and coordinating these 
across users, conflicts between us­
ers can be removed, allowing even 
more concurrency and greater sys­
tem throughput. 

LOGGING OVERHEAD 
Overhead due to transaction log­
ging can sometimes be reduced by 
minimizing the amount of data in­
volved· in writes to the database. 
By selecting a dense rather than 
sparse encoding of data fields, the 
width of tables can be significant­
ly reduced. This in turn reduces 
the number of bytes which must 
be processed-per row of data. The 
trade-off is that users may no long­
er recognize the data's meaning, 
although this can usually be han­
dled through views. 

Similarly, selecting a data en­
coding that converts a disjunctive 
list into a range is appropriate if 
the typical access pattern involves 
such a range. Then, by adding an 
index on the particular column, 
the SQL statements will access 
fewer index pages inore quickly. 

It is useful to encode primary 
keys as integers, with successive 
rows as an increment of the high­
est primary key value. The origi­
nal primary key becomes a candi­
date key in the table. The result of 
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An application 

should issue the 
highest level SQL 
request possible 

this compression is that the prima­
ry key index pages can reference 
the greatest number of rows. In 
addition, once the key is known in 
a particular transaction, it can be 
used to eliminate unnecessary 
comparisons between compound 
keys and their component values. 

BUFFER SIZES 
The allocation of the memory to 
be used by the database for query 
parsing, input buffering, results 
processing, and output buffering 
can improve performance. Howev­
er, it is necessary to know the 
amount of memory used by the 
typical transaction; since most 
products provide this as a system 
tuning parameter rather than a pa­
rameter to tune the individual 
transaction. 

During heavy update and in­
sert periods, the input buff­

possible by committing outstanding 
transactions, emphasizes the impor­
tance of application architecture. 
The ideal relational application nev­
er imposes delays on the relational 
database, either during input or 
output. 

OTHER SYSTEM PARAMETERS 
Most vendors allow the database 
administrator to control many sys­
tem parameters such as the number 
of concurrent users, the application 
buffer space per user, open cursors, 
concurrent processes, open tables 
per user, and memory allocated for 
sort-merge operations. In addition, 
many operating system parameters 
may affect the performance of the 
database. For example, the number 
of files open at any time, the maxi­
mum amount of disk space allocat­
ed per file; and the maximum num­
ber of files in a directory can affect 
system performance and database 
administration. These parameters 
vary from operating system to oper­
ating system, as well as from ven­
dor to vendor. 

The database vendor should 
provide guidelines for optimizing 
both sets of parameters for your in­

stallation. However, because 
er may become over­
loaded, requiring a 
temporary hold on 
further processing or 
perhaps flushing the • 

of the degree of sensitivity 
to your application and 
the hardware and soft­
ware environment, you 

should make an applica­
tions expert and an operating 

systems expert available during the 
tuning process. 

buffer to disk. Both reduce 
the system throughput, so that a 
larger input buffer may be desir­
able. 

It is possible to create an SQL 
statement nested so deep that the 
parser does not have enough work­
ing memory to parse the query. In a 
similar way, multiple long state­
ments may overload the parse buff­
er if the parser allows multiple 
statements to be held in the buffer 
simultaneously. 

Working buffers are used for 
processing intermediate results. 
Typical intermediate processing 
operations include sorting and 
merging of · two or more tables. 
Again, if the intermediate results 
are too large to be cached in mem­
ory, they must be swapped to disk. 

If the final results are avail­
able faster than the application can 
accept them, output buffer sizes be­
come important. This, along with 
the need to release locks as soon as 
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Tuning relational database 
applications for performance re­
quires system thinking. It is not 
enough to be proficient in SQL or 
database normalization. While ex­
pertise in the technical aspects of 
relational database systems and 
performance modeling are impor­
tant, experience with the environ­
ment using the database product 
of choice is what counts. One last 
piece of advice: don't ignore how 
the application uses the database. 
It affects not only response time, 
but also that aspect of performance 
with which production systems are 
often concerned-throughput. • 

David McGoveran is president of Alterna­
tive Technologies in Santa Cruz, Calif., a 
consulting firm that has been specializ­
ing in relational database applications for 
the last eight years. 
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